Skip to main content

Advertisement

Log in

The “parallel pathway”: a novel nutritional and metabolic approach to cancer patients

  • IM - Review
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Cancer-associated malnutrition results from a deadly combination of anorexia, which leads to reduced food intake, and derangements of host metabolism inducing body weight loss, and hindering its reversal with nutrient supplementation. Cancer patients often experience both anorexia and weight loss, contributing to the onset of the clinical feature named as anorexia–cachexia syndrome. This condition has a negative impact upon patients’ nutritional status. The pathogenesis of the anorexia–cachexia syndrome is multifactorial, and is related to: tumour-derived factors, host-derived factors inducing metabolic derangements, and side effects of anticancer therapies. In addition, the lack of awareness of cancer patients’ nutritional issues and status by many oncologists, frequently results in progressive weight loss going undiagnosed until it becomes severe. The critical involvement of host inflammatory response in the development of weight loss, and, in particular, lean body mass depletion, limits the response to the provision of standard nutrition support. A novel nutritional and metabolic approach, named “parallel pathway”, has been devised that may help maintain or improve nutritional status, and prevent or delay the onset of cancer cachexia. Such an approach may improve tolerance to aggressive anticancer therapies, and ameliorate the functional capacity and quality of life even in advanced disease stages. The “parallel pathway” implies a multiprofessional and multimodal approach aimed at ensuring early, appropriate and continuous nutritional and metabolic support to cancer patients in any phase of their cancer journey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. MacDonald N, Easson AM, Mazurak VC et al (2003) Understanding and managing cancer cachexia. J Am Coll Surg 197:143–161

    Article  PubMed  Google Scholar 

  2. Muscaritoli M, Anker SD, Argilés J et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia–anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr (Epub ahead of print)

  3. Bossola M, Muscaritoli M, Costelli P, Grieco G, Monelli G, Pacelli F, Rossi Fanelli F, Doglietto GB, Baccino FM (2003) Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann Surg 237:384–389

    Article  PubMed  Google Scholar 

  4. Bossola M, Muscaritoli M, Costelli P, Bellantone R, Pacelli F, Busquets S, Argiles J, Lopez-Soriano FJ, Civello IM, Baccino FM, Rossi Fanelli F, Doglietto GB (2001) Increased muscle ubiquitin mRNA levels in gastric cancer patients. Am J Physiol 280:R1518–R1523

    CAS  Google Scholar 

  5. Laviano A, Meguid MM, Rossi Fanelli F (2003) Cancer anorexia: clinical implications, pathogenesis and therapeutic strategies. Lancet Oncol 4:686–694

    Article  PubMed  CAS  Google Scholar 

  6. Laviano A, Meguid MM, Rossi Fanelli F (2003) Improving food intake in anorectic cancer patients. Curr Opin Clin Nutr Metab Care 6:421–426

    Article  PubMed  Google Scholar 

  7. Argiles JM, Lopez-Soriano FJ (1998) Catabolic proinflammatory cytokines. Curr Opin Clin Nutr Metab Care 1:245–251

    Article  PubMed  CAS  Google Scholar 

  8. Dempsey DT, Knox LS, Mullen JL, Miller C, Feurer ID, Buzby GP (1996) Energy expenditure in malnourished patients with colorectal cancer. Arch Surg 121:789–795

    Google Scholar 

  9. Gibney E, Elia M, Jebb SA, Murgatroyd P, Jennings G (1997) Total energy expenditure in patients with non small-cell lung cancer: results of a validated study using the bicarbonate-urea method. Metabolism 46:1412–1417

    Article  PubMed  CAS  Google Scholar 

  10. Falconer JS, Fearon KC, Plester CE, Ross JA, Carter DC (1994) Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg 219:325–331

    Article  PubMed  CAS  Google Scholar 

  11. Rossi Fanelli F, Cangiano C, Muscaritoli M, Conversano L, Torelli GF, Cascino A (1995) Tumor induced changes in host metabolism: a possible marker of neoplastic disease. Nutrition 11:595–600

    PubMed  CAS  Google Scholar 

  12. Mathupala SP, Rempel A, Pendersen PL (1995) Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem 270:16918–16925

    Article  PubMed  CAS  Google Scholar 

  13. De Blaauw I, Deutz NE, von Meyenfeldt MF (1997) Metabolic changes of cancer cachexia-first of two part. Clin Nutr 16:169–176

    Article  PubMed  Google Scholar 

  14. Tajek JA, Manglik S, Abemayor E (1997) Insulin secretion, glucose production and insulin sensitivity in underweight and normal weight volunteers, and in underweight and normal-weight cancer patients. Metabolism 46:140–145

    Article  Google Scholar 

  15. Skolnik EY, Marcusohn J (1996) Inhibition of insulin receptor signaling by TNF: potential role in obesity and non-insulin-dependent diabetes mellitus. Cytokine Growth Fact Rev 7:161–173

    Article  CAS  Google Scholar 

  16. Halton JM, Nazir DJ, McQueen MJ, Barr RD (1998) Blood lipid profiles in children with acute lymphoblastic leukaemia. Cancer 83:379–384

    Article  PubMed  CAS  Google Scholar 

  17. Costelli P, Tessitore L, Batetta B et al (1999) Alterations of lipid and cholesterol metabolism in cachectic tumor-bearing rats are prevented by insulin. J Nutr 129:700–706

    PubMed  CAS  Google Scholar 

  18. Muscaritoli M, Cangiano C, Cascino A, Ceci F, Giacomelli L, Cardelli-Cangiano P, Mulieri M, Rossi Fanelli F (1990) Plasma clearance of exogenous lipids in patients with malignant disease. Nutrition 6:147–151

    PubMed  CAS  Google Scholar 

  19. Sakurai Y, Klein S (1998) Metabolic alterations in patients with cancer: nutritional implications. Surg Today 28:247–257

    Article  PubMed  CAS  Google Scholar 

  20. Ishiko O, Nishimura S, Yasui T et al (1999) Metabolic and morphologic characteristics of adipose tissue associated with the growth of malignant tumors. Jpn J Cancer Res 90:655–659

    PubMed  CAS  Google Scholar 

  21. Gullett N, Rossi P, Kucuk O, Johnstone PA (2009) Cancer-induced cachexia: a guide for the oncologist. J Soc Integr Oncol 7:155–169

    PubMed  Google Scholar 

  22. Korber J, Pricelius S, Heidrich M, Muller MJ (1999) Increased lipid utilization in weight losing and weight stable cancer patients with normal body weight. Eur J Clin Nutr 53:540–545

    Article  Google Scholar 

  23. Fearon KCH (1992) The mechanisms and treatment of weight loss in cancer. Proc Nutr Soc 51:251–265

    Article  PubMed  CAS  Google Scholar 

  24. López-Soriano J, Carbó N, Tessitore L, López-Soriano FJ, Argilés JM (1999) Leptin and tumor growth in rats. Int J Cancer 81:726–729

    Article  PubMed  Google Scholar 

  25. Wallace AM, Sattar N, McMillan DC (1998) Effect of weight loss and the inflammatory response on leptin concentrations in gastrointestinal cancer patients. Clin Cancer Res 4:2977–2979

    PubMed  CAS  Google Scholar 

  26. Costelli P, Baccino FM (2000) Cancer cachexia: from experimental models to cancer patients. Curr Opin Clin Nutr Metab Care 3:177–181

    Article  PubMed  CAS  Google Scholar 

  27. Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133:2052S–2056S

    PubMed  CAS  Google Scholar 

  28. Temparis S, Asensi M, Taillandier D et al (1994) Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. Cancer Res 54:5568–5573

    PubMed  CAS  Google Scholar 

  29. Llovera M, Garcia-Martinez C, Agell N, Lopez-Soriano FJ, Argiles JM (1995) Muscle wasting associated with cancer cachexia is linked to an important activation of the ATP-dependent ubiquitin-mediated proteolysis. Int J Cancer 61:138–141

    Article  PubMed  CAS  Google Scholar 

  30. Lundholm K, Ekman L, Karlberg I, Edstrom S, Schersten T (1980) Comparison of hepatic cathepsin D activity in response to tumor growth and to caloric restriction in mice. Cancer Res 40:1680–1685

    PubMed  CAS  Google Scholar 

  31. Tessitore L, Costelli P, Bonetti G, Baccino FM (1993) Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch Biochem Biophys 306:52–58

    Article  PubMed  CAS  Google Scholar 

  32. Deval C, Mordier S, Obled C et al (2001) Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 360:143–150

    Article  PubMed  CAS  Google Scholar 

  33. Jagoe RT, Redfern CP, Roberts RG, Gibson GJ, Goodship TH (2002) Skeletal muscle mRNA levels for cathepsin B, but not components of the ubiquitin-proteasome pathway, are increased in patients with lung cancer referred for thoracotomy. Clin Sci 102:353–361

    Article  PubMed  CAS  Google Scholar 

  34. Costelli P, De Tullio R, Baccino FM, Melloni E (2001) Activation of Ca2+-dependent proteolysis in the skeletal muscle and heart in cancer cachexia. Br J Cancer 84:946–950

    Article  PubMed  CAS  Google Scholar 

  35. Costelli P, Bossola M, Muscaritoli M et al (2002) Anti-cytokine treatment prevents the increase in the activity of ATP-ubiquitin- and Ca2+-dependent proteolytic systems in the muscle of tumour-bearing rats. Cytokine 19:1–5

    Article  PubMed  CAS  Google Scholar 

  36. Wray CJ, Sun X, Gang GI, Hasselgren PO (2002) Dantrolene downregulates the gene expression and activity of the ubiquitin-proteasome proteolytic pathway in septic skeletal muscle. J Surg Res 104:82–87

    Article  PubMed  CAS  Google Scholar 

  37. Tidball JG, Spencer MJ (2002) Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J Physiol 545:819–828

    Article  PubMed  CAS  Google Scholar 

  38. Guttridge DC, Mayo MW, Madrid LW et al (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366

    Article  PubMed  CAS  Google Scholar 

  39. Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25

    Article  PubMed  CAS  Google Scholar 

  40. Costelli P, Muscaritoli M, Bossola M et al (2005) Skeletal muscle wasting in tumour-bearing rats is associated with MyoD down-regulation. Int J Oncol 26:1663–1668

    PubMed  CAS  Google Scholar 

  41. Costelli P, Muscaritoli M, Bonetto A et al (2008) Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur J Clin Invest 38:531–538

    Article  PubMed  CAS  Google Scholar 

  42. Van Royen M, Carbo N, Busquets S, Alvarez B, Quinn LS, Lopez-Soriano FJ et al (2000) DNA fragmentation occurs in skeletal muscle during tumour growth: a link with cancer cachexia? Biochem Biophysic Res Commun 270:533–537

    Article  Google Scholar 

  43. Bossola M, Mirabella M, Ricci E, Costelli P, Pacelli F, Tortorelli AP, Muscaritoli M, Rossi Fanelli F, Baccino FM, Tonali PA, Doglietto GB (2006) Skeletal muscle apoptosis is not increate in gastric cancer patients with mild-moderate weight loss. Int J Biochem Cell Biol 38:1561–1570

    Article  PubMed  CAS  Google Scholar 

  44. Ross PJ, Ashely S, Norton A et al (2004) Do patients with weight loss have a worse outcome when undergoing chemotherapy for lung cancers? Br J Cancer 90:1905–1911

    Article  PubMed  CAS  Google Scholar 

  45. Ravasco P, Monteiro-Grillo I, Vidal PM et al (2005) Dietary counseling improves patients outcomes: a prospective, randomized, controlled trial in colorectal cancer patients undergoing radiotherapy. J Clin Oncol 23:1431–1438

    Article  PubMed  Google Scholar 

  46. Linee guida SINPE per la Nutrizione Artificiale Ospedaliera (2002) Rivista Italiana di Nutrizione Parenterale ed Enterale S1–S171

  47. Arends J, Bodoky G, Bozzetti F et al (2006) ESPEN guidelines on adult enteral nutrition: non-surgical oncology. Clin Nutr 25:245–259

    Article  PubMed  CAS  Google Scholar 

  48. Muscaritoli M, Grieco G, Capria S, Iori AP, Rossi Fanelli F (2002) Nutritional and metabolic support in patients undergoing bone marrow transplantation. Am J Clin Nutr 75:183–190

    PubMed  CAS  Google Scholar 

  49. Bozzetti F, Arends J, Lundholm K, Micklewright A, Zurcher G, Muscaritoli M, ESPEN (2009) ESPEN Guidelines on parenteral nutrition: non-surgical oncology. Clin Nutr 28:445–454

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Muscaritoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscaritoli, M., Molfino, A., Gioia, G. et al. The “parallel pathway”: a novel nutritional and metabolic approach to cancer patients. Intern Emerg Med 6, 105–112 (2011). https://doi.org/10.1007/s11739-010-0426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-010-0426-1

Keywords

Navigation