Geographical distance and reduced access to palliative radiotherapy: systematic review and meta-analysis

Chandini Parsan Chand,1 Sarah Greenley,1 Una Macleod,1 Mike Lind,1,2 Rachel Barton,2 Charlotte Kelly1

ABSTRACT

Background Palliative radiotherapy (PRT) is an effective way of reducing symptoms caused by advanced incurable cancer. Several studies have investigated factors that contribute to inequalities in access to PRT; distance to a radiotherapy centre has been identified as one potential barrier.

Aim To assess whether there is an association between distance to a radiotherapy centre and utilisation rates of PRT in adults with cancer.

Methods A systematic review and meta-analysis protocol was registered in the PROSPERO database (CRD42020190772). MEDLINE, EMBASE, CINAHL and APA-PsycINFO were searched for relevant papers up to 28 February 2021.

Results Twenty-one studies were included. Twelve studies focused on whether patients with incurable cancer received PRT, as part of their treatment package. Pooled results reported that living ≥50 km vs <50 km from the radiotherapy centre was associated with a reduced likelihood of receiving PRT (OR 0.84 (95% CI 0.80, 0.88)). Nine focused on distance from the radiotherapy centre and compared single-fraction (SF) versus multiple-fraction PRT, indicating that patients living further away were more likely to receive SF. Pooled results comparing ≥50 km versus <50 km showed increased odds of receiving SF for those living ≥50 km (OR 1.48 (95% CI 1.26, 1.75)).

Conclusion Patients living further away from radiotherapy centres were less likely to receive PRT and those who received PRT were more likely to receive SF PRT, providing some evidence of inequalities in access to PRT treatment based on proximity to centres providing radiotherapy. Further research is needed to understand whether these inequalities are influenced by clinical referral patterns or by patients unwilling or unable to travel longer distances.

INTRODUCTION

Palliative radiotherapy (PRT) plays an important role in the care of people with incurable cancer through the palliation of symptoms such as pain, bleeding and obstruction.1 It has been shown to reduce pain in 60% of patients with bone metastases and give complete pain relief in around 25%.2 Patients receive radiotherapy through linear accelerators in specialist cancer centres.3 When treatment is palliative, patients receive lower doses of radiation (compared with curative radiotherapy) with aims of maximising symptom control and reducing treatment burden. PRT is used in a range of advanced cancer settings, including to reduce pain due to bone metastases, reduce neurological compromise due to

Key messages

What was already known?

 ► Numerous studies have identified a range of clinical and non-clinical barriers to receiving palliative radiotherapy.

 ► Research has shown an inverse association between living further from healthcare facilities and cancer outcomes.

What are the new findings?

 ► Living further from a radiotherapy centre was associated with being less likely to receive palliative radiotherapy.

 ► Those who do receive PRT and live further away were more likely to receive single-fraction radiotherapy.

What is their significance?

 ► There are some patients with cancer who might benefit from palliative radiotherapy that are not receiving it potentially due to where they live.

 ► Research is needed to explore how to provide equal access to this treatment to improve quality of life in the face of unequal proximity to facilities.
malignant spinal cord compression, manage symptoms from brain metastases and from advanced head and neck and pelvic cancers. In other words, PRT is seen as an effective and vital treatment for improving quality of life for patients with incurable cancer.

There is evidence of variation in its use across countries, with regards to dosage and number of fractions of radiotherapy that patients receive. Current guidance recommends that patients should receive single-fraction (SF) radiotherapy for uncomplicated bone metastases (usually 8 Gy × 1), which requires patients to have one visit for treatment compared with multiple fractions (MF), which requires treatments over multiple days. Trials have shown that SF for treatment of uncomplicated bone metastases provides equal pain relief to MF, but with a slightly higher retreatment rate. While not relevant for all patients who have complicated metastases, SF reduces the need for patients to make multiple trips for treatment. A number of clinical and non-clinical factors have been identified, which might affect PRT rates. These include type of cancer, performance status, surviving time, and age and deprivation. Due to the need to include type of cancer, performance status, surviving time, and age and deprivation. Studies were uploaded into the COVIDENCE systematic review software for screening. All titles and abstracts were screened independently by CPC and CK. The inclusion criteria were that the study quantified the distance or travel time to the radiotherapy centre and identified whether there was an association between this and the utilisation of PRT for patients with cancer. We did not restrict by language, date, country or study type. We excluded papers about children, conference abstracts and qualitative studies.

Full papers of studies that met the inclusion criteria were independently reviewed by CPC and CK and the data were extracted and quality assessed for those that met the criteria. The data were extracted by CPC and CK using a predefined set of criteria documented in the study protocol. The quality assessment of studies was undertaken by CPC and CK using the Newcastle Ottawa Scale for cohort studies. No studies were excluded on the basis of the quality assessment.

A meta-analysis was conducted using the Revman software pooling together those studies with raw data that could be grouped into the categories of <50 km or ≥50 km from the treatment centre. This reduced the number of included studies. Pooled OR and 95% CIs were produced for a comparison between those studies that compared SF versus MF and separately the utilisation of PRT. The I² statistic was assessed to describe the difference across studies due to heterogeneity rather than chance. A random effects approach was then used to account for unexplained heterogeneity across the included studies.

RESULTS

After deduplication, we screened 2170 titles and abstracts and 94 full text papers resulting in 21 studies that met the inclusion criteria and were included in the review (figure 2). The quality assessment is summarised in table 1. All studies were retrospective cohorts and had used a range of cancer registry data and hospital records to select their cohorts. In all cases, secure records had been used to determine origins (where patients lived) and destinations (radiotherapy centres) to calculate the travel times and distances to determine the exposure. Two studies did not run a multivariate model controlling for other key variables. The majority of studies controlled for age and sex (where relevant) and 90% of studies controlled for a range of other relevant factors (as is seen in online supplemental table 1 and table 2). In all cases, the outcomes were assessed using clinical records of patients with cancer either directly from their hospital records or through records accessed through a cancer registry. Nineteen studies
RADIOThERAPY TERMS
1. exp Radiotherapy/
2. radiother*.mp.
3. radiat*.mp.
4. irradiat*.mp.
5. exp Neoplasms/rt [Radiotherapy]
6. rt.fs.
7. or/1-6 [radiotherapy concept]

CANCER TERMS
8. exp Neoplasms/
9. cancer$.mp.
10. tumor$.mp.
11. tumour$.mp.
12. metastat$.mp.
13. or/8-12 [cancer concept]

TRAVEL TERMS
14. (proximit* or travel* or distanc* or journey*).mp.
15. Health Services Accessibility/
16. travel/
17. "Transportation of Patients"/
18. ((travel* adj3 distanc*) or (travel* adj3 time) or (journey* adj3 time) or (journey* adj3 length) or (travel* adj3 length) or (travel* adj3 duration) or (geograph* adj3 location*).ti,ab,kw.
19. exp spatial analysis/
20. exp Geography, Medical/
21. exp Transportation/
22. rural population/ or suburban population/ or urban population/
23. or/14-22 [travel concept]
24. 7 and 13 and 23 [Radiotherapy AND Cancer AND Travel]

PALLIATIVE CARE TERMS
25. exp advance care planning/
26. exp attitude to death/
27. exp bereavement/
28. death/
29. hospices/
30. life support care/
31. palliative care/
32. terminal care/
33. terminally ill/
34. palliat$.tw.
35. hospice$.tw.
36. terminal care.tw.
37. physician-patient relations/
38. prognosis/
39. quality of life/
40. survival rate/
41. attitude to health/
42. Treatment Outcome/
43. or/25-42 [Sladek Care search 2007 revision]
44. exp Terminal Care/
45. caregiver$.mp.
46. bereave$.mp.
47. inpatient.tw.
48. attitude to death.mp.
49. end of life.af.
50. hospice$.
51. terminally ill.mp.
52. palliative$.mp.
53. Advance Care.af.
54. (morphine and cancer).af.
55. cancer pain.af.
56. or/44-55 [Rietjens 2019 sensitive filter]
57. 43 or 56 [combined Sladek 2007 or Rietjens sensitive filter]
58. 24 and 57 [Line 24 AND palliative care]
59. exp animals/ not humans.sh.
60. 58 not 59 [Final]

Figure 1 Medline search strategy.
achieved the maximum score of 9/9 and no studies were excluded on the basis of this quality assessment.

Twelve of the 21 included studies focused on whether people diagnosed with cancer received PRT or had retreatment (online supplemental table 1). The other nine studies focused on those who did receive PRT as part of their treatment, but received different dosages or fractions of radiotherapy (SF vs MF) (table 2). The majority of studies had accessed cancer registry data, with two studies accessing hospital records directly. The studies covered treatments received by patients between the dates of 1984 and 2015.

The studies were all from Global North countries despite the study team not imposing any restrictions.

Table 1: Quality assessment of the studies using the Newcastle Ottawa scale for cohort studies

<table>
<thead>
<tr>
<th>Yes (%)</th>
<th>No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td></td>
</tr>
<tr>
<td>Representativeness of the cohort</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Selection of the non-exposed cohort is drawn from the same community as the exposed cohort</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Ascertainment of travel distance/ time (derived from hospital records)</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Outcome of interest was accounted for</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Comparability of cohorts</td>
<td></td>
</tr>
<tr>
<td>The study controlled for the most important factors (age and where relevant sex)</td>
<td>19 (90)</td>
</tr>
<tr>
<td>The study controlled for additional key variables</td>
<td>19 (90)</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>Ascertainment of the outcome was through clinical records</td>
<td>21 (100)</td>
</tr>
<tr>
<td>Length of time was long enough for the outcomes (utilisation of PRT) to occur</td>
<td>21 (100—00)</td>
</tr>
<tr>
<td>Adequacy of follow-up of cohort. All subjects accounted for.</td>
<td>21 (100)</td>
</tr>
</tbody>
</table>

PRT, palliative radiotherapy.
<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Healthcare system</th>
<th>Data source</th>
<th>Study design</th>
<th>Description of cancer</th>
<th>Description of palliative radiotherapy</th>
<th>Distance/travel time measure</th>
<th>Characteristics controlled for</th>
<th>Summary of key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashworth et al</td>
<td>Canada</td>
<td>Publicly funded</td>
<td>Ontario Cancer Registry - Retrospective cohort</td>
<td>2016</td>
<td>Bone Metastases Range of primary cancers</td>
<td>SF 8–10 Gy x 1 vs MF 20 Gy x 5 or 30 Gy x 10</td>
<td>Distance to the radiotherapy centre (<10m, 10–50km and >50km)</td>
<td>Sex, age at treatment, primary cancer site, socioeconomic status quintiles, time to death, primary site, body region treated, retreatment, cancer centre, year of treatment</td>
<td>Patients with longer travel distances were more likely to receive SF.</td>
</tr>
<tr>
<td>Barnes et al</td>
<td>USA</td>
<td>Mixed Funding</td>
<td>British Columbia Cancer Registry - Retrospective cohort</td>
<td>2015</td>
<td>Bone Metastases Range of primary cancers</td>
<td>SF vs MF</td>
<td>Distance to the radiotherapy centre (0–50km, 50–100km 100–200km, 200–500km and >500km)</td>
<td>Sex, age, treatment year, primary tumour group, treatment centre</td>
<td>Increased travel distance was associated with increased likelihood of receiving SF up to a travel threshold.</td>
</tr>
<tr>
<td>Fisher-Valuck et al</td>
<td>USA</td>
<td>Mixed Funding</td>
<td>National Cancer Database - Retrospective Cohort</td>
<td>2018</td>
<td>Bone Metastases Prostate cancer</td>
<td>Short Course 8 Gy x 1 & 20 Gy x 5 vs Long course 30 Gy x 10 fractions & 37.5 Gy x 15 fractions</td>
<td>Distance to the radiotherapy centre (0–5 miles, >5–10 miles, >10–15miles, >15 miles)</td>
<td>Age, race, year of diagnosis, Charles-Deyo Comorbidity, site of treatment, facility type, insurance status, income</td>
<td>Increased travel distance was associated with increased likelihood of receiving SF.</td>
</tr>
<tr>
<td>Laugsand et al</td>
<td>Norway</td>
<td>Publicly Funded</td>
<td>Cancer Registry of Norway - Retrospective Cohort</td>
<td>2012</td>
<td>Bone Metastases Range of primary cancers</td>
<td>SF 8 Gy x 1 vs MF 3 Gy x 10</td>
<td>Shortest distance by road (some cases with car/ ferry) using Google Maps from residence to the radiotherapy centre. Travel distance was a continuous variable</td>
<td>Age, sex, primary diagnosis, anatomical region irradiated, treatment centre</td>
<td>Increased travel distance was associated with increased relative risk of receiving SF.</td>
</tr>
<tr>
<td>Le Fevre et al</td>
<td>France</td>
<td>Mixed funding</td>
<td>Single hospital records - Retrospective Cohort</td>
<td>2018</td>
<td>Uncomplicated Bones Metastases</td>
<td>SF 8 Gy x 1 vs 20 Gy x5 vs 30 Gy x10 vs 23.31 Gy x3</td>
<td>Travel distance between the patients' home and radiotherapy centre. N/A (study compared differences in travel distance across the four groups using χ² test)</td>
<td>Increased travel distance not associated with differences in the PRT treatment rates (p=0.87). The same sizes were very small across the four groups with a total of 91 patients.</td>
<td></td>
</tr>
<tr>
<td>Resende et al</td>
<td>USA</td>
<td>Mixed funding</td>
<td>National Cancer Database - Retrospective cohort</td>
<td>2019</td>
<td>Bone Metastases Multiple myeloma</td>
<td>SF 8 Gy x 1 vs MF</td>
<td>Travel distance from the patient area of residence to the reporting facility</td>
<td>Age, sex, race, residence, insurance, facility type, annual income, comorbidity index, high school level, year of diagnosis</td>
<td>Increased travel distance was associated with increased odds of receiving SF.</td>
</tr>
<tr>
<td>Rutter et al</td>
<td>USA</td>
<td>Mixed funding</td>
<td>National Cancer Database - Retrospective cohort</td>
<td>2015</td>
<td>Bone Metastases (non-spinal)</td>
<td>SF vs MF</td>
<td>Linear travel distance from the patient’s residence to the cancer reporting facility</td>
<td>Age, insurance type, diagnosis year, facility type, Charlson-Deyo Comorbidity score, facility location, radiation therapy site</td>
<td>Increased travel distance was associated with increasing odds of receiving SF.</td>
</tr>
</tbody>
</table>

Table 2: Studies that compared patients who received single fraction versus multi fraction palliative radiotherapy
on healthcare system or country in the searches. These included 11 studies from Canada, 30 31 36 four studies from the USA, 28 32 two from Australia, 33 two from Norway 34 35 and one from France. 17 This represented a mixture of healthcare systems from the free at the point of use systems in Canada, Norway and Australia to a mixture of insurance and non-insurance-based healthcare systems in the USA and France.

The majority of the studies in the review (14 studies) drew their populations from cancer registries and included different primary cancer sites in their analysis. Seven studies focused on specific primary cancers, which were prostate cancer, 30 31 breast cancer, 18 non-small cell lung cancer 31 and multiple myeloma, 28 32 The majority of studies (19 studies) focused on PRT for bone metastases, with two studies looking specifically at PRT to the whole of the brain. 23 24

There was variability in definitions of ‘palliative’ radiotherapy employed in the studies. For this review, we accepted the authors definition. For the studies that focused on radiotherapy utilisation, this varied from radiotherapy during the last 2 years of life, 23 24 35 the last year of life, 6 in the last 9 months of life, 25 radiotherapy recorded as being administered with palliative intent, 18 22 ‘received within 4 months of a diagnosis or claim within 2 years of diagnosis containing any code indicating RT’ 32 radiotherapy intent, 27 dose <30\text{Gy}, 6 dose <39.5\text{Gy} 35 and 10 fractions administered. 22 For the studies that compared SF with MF, the majority of studies described SF as 8\text{Gy} \times 1, but varying doses and fractions for the MF (eg, 3\text{Gy} \times 10).

Travel time and distance were calculated using a range of available data. The start of the journey to the radiotherapy centre was calculated using either residential location at death, 22 23 residential location at diagnosis 27 or the patients’ residence. 29 The end point of the journey was described as the nearest radiotherapy centre, the centre attended, 34 the reporting facility 28 29 and the cancer centre most frequently visited by patients in the same census subdivision. 27 35 The calculation of distance and travel time using these origins and destination also varied across the studies with some using straight line distance ‘as the crow flies’, 22 24 27 29 road distance 17 21 24 26 28 30 36 and travel time. 23 25 All studies with the exception of Laugsgard 34 (who included travel distance as a continuous variable) split the calculated travel distances and times into categories. There was a large variability in the distances and travel times used in calculations. For example, Wegner 31 split the travel distances into two categories (\textless{}8.5 miles and \textgreater{}8.5 miles), and this can be compared with Asli 35 who split the distances into nine categories, with some patients with cancer living greater than 800km from the nearest radiotherapy centre.

The majority of studies focusing on utilisation of PRT (online supplemental table 1) identified an association between living further away from a radiotherapy centre and being less likely to receive PRT, 6 18 19 22 27 35 with the exception of only one study, which did not find an association. 32 When comparing the utilisation of SF versus MF (table 2), all but one study 17 identified an association with patients living further away from the radiotherapy centre and being more likely to receive SF. 20 21 28 30 34 36

With the exception of two studies, 17 33 all others controlled for a range of clinical and non-clinical variables from the patient records in the statistical models. All other studies included age (at diagnosis or death) and gender, where relevant (eg, not for prostate cancer) in their models. The studies controlled for different combinations of variables (as shown in table 2 and online supplemental table 1), which included ethnicity, race.
insurance type, hospital type, household income, level of education, socioeconomic status, levels of deprivation, year of diagnosis, year of treatment, place of death and being diagnosed at a hospital with radiotherapy facilities. Clinical variables included primary diagnosis, anatomical region irradiated, comorbidity index, access to other therapies (eg, chemotherapy) and time between diagnosis and death. Thus, highlighting the range of important factors in addition to distance/travel time that might influence access to PRT.

Although the studies were heterogeneous and considered a number of distance categories, a number had reported data for distances <50 km and ≥50 km or had provided data allowing the categories of <50 km versus ≥50 km to be created from the raw data, enabling those studies to be pooled together into two meta-analyses. A random effects model was used to account for the high level of heterogeneity across the studies.

The meta-analysis focusing on those receiving PRT versus not receiving PRT is shown in figure 3. Categorising the distances as <50 km versus ≥50 km allowed the pooling of six out of the nine studies that has considered receipt of PRT were included in the review. The included studies were representative of the wider group of studies and were based in similar healthcare settings (eg, publicly funded in Canada) and showed an association between living further away and lower odds of receiving PRT. The pooled results recorded that patients living ≥50 km from the radiotherapy centre had lower odds of receiving PRT as part of their treatment compared with those living <50 km from the radiotherapy centre (OR 0.84 (95%CI 0.80, 0.88)) (figure 3).

The meta-analysis focusing on studies that considered SF radiotherapy versus multifraction radiotherapy is shown in figure 4. Categorising distance as <50 km versus ≥50 km allowed four studies out of the original nine to be included in the pooled results. This meta-analysis includes two studies from healthcare settings in the USA and two from Canada. It was not possible to include the studies based in Europe in the meta-analysis due to the measures of travel time/distance used in the studies. In the meta-analysis those living ≥50 km from the radiotherapy centre was associated with higher Odds of receiving SF radiotherapy compared with those that lived <50 km away, with pooled OR 1.48 (95% CI 1.26, 1.75).

DISCUSSION

The studies in this review have reported that advanced stage cancer patients living further from a radiotherapy centre had a reduced likelihood of receiving PRT, as part of their treatment package and for those that did receive PRT there was a difference in the radiotherapy dosage and number of fractions of radiotherapy provided, thus, indicating evidence of inequalities based on distance. This association was evident in studies based in countries with publicly funded healthcare systems (eg, Canada and Norway) and mixed public/private healthcare settings (eg, USA). Due to the equipment and specialist operators required for radiotherapy treatment, there will always be a conflict between providing treatment to a large geographical area in a centralised centre and some patients having to travel further distances. The question is
how to minimise the effects of the distance on patients to reduce the levels of inequalities in access identified.

A number of potential barriers to the referral of patients for PRT have been considered in the literature, with Vargas et al reporting the top four perceived barriers as ‘patient reluctance, patient’s poor performance status, family reluctance and distance to the radiotherapy centre’ (p1196). Additionally, further down the list was the absence of a radiation oncologist available to discuss the case. Spencer et al summarised that not all clinicians are aware of the benefits of PRT and maybe less willing to refer end of life patients for this treatment especially those who may have to travel long distances to get there.

Similarly, studies have highlighted the critical impact of being diagnosed at a hospital that has radiotherapy facilities, with included study Mackillop and Kong concluding that the association between travel distance and not receiving PRT treatment was stronger for those patients diagnosed at a hospital with no radiotherapy facilities, who may have been less likely to be referred for the treatment.

Evidence-based guidelines in a number of countries have recommended the use of SF radiotherapy for treatment of uncomplicated bone metastases, with evidence highlighting that it can provide equal pain relief to MF, but with a slightly higher retreatment rate. While for complex metastases, MF radiotherapy is supported. Following guidelines concerning the use of SF for uncomplicated metastases in Canada, Ashford et al identified an initial increase in the use of SF (compared with MF), but this declined over time back to similar levels before the guidelines was introduced. In the USA, there are lower levels of SF, which may have resulted in disadvantaging those living closer with incurable cancer, given that they are required to travel more frequently for longer fractions of RT than those living further away. An inequality that is the opposite of what might be expected when focusing on distance, as those living closer are more likely to have more fractions and have more trips to the radiotherapy centre along with the discomfort that this brings. As no studies had included patient data later than 2015, it is unclear whether this may have changed over the last 6 years.

The review identified differences in the distances that some patients with cancer would have to travel to access a hospital with radiotherapy facilities, ranging from 0 km to >800 km away to <8.5 km versus >8.5 km. Indicating again the inequalities in access to specialist radiotherapy facilities that can provide PRT that some patients living in expansive healthcare geographical catchment areas such as in Canada, USA and Australia face. The meta-analyses focused on comparing across the same travel threshold (<50 km vs ≥50 km). Evidence of different travel thresholds, beyond which it becomes less likely to receive treatment or the type of treatment changes emerged from the review. Barnes et al identified evidence that as patients lived further from the radiotherapy centre they were more likely to receive SF PRT, but for those travelling the furthest distance (>200 km), this association started to break down and patients were increasingly likely to receive MF PRT as they may travel and stay to receive the MF rather than making individual trips. Asli et al also found that patients living in the furthest distances from the treatment centre (>800 km) had higher odds of receiving PRT (compared with patients living 0–9.9 km away) than those closer to the radiotherapy centre. Travelling the furthest distances may mean using faster modes of travel (eg, by air), potentially leading to patients staying for a period of time near the treatment centre, allowing longer treatment schedules compared with those living comparatively closer.

Going beyond the distance, it is key to ensure that patients can access the treatment ‘at reasonable cost, in reasonable time and with reasonable ease’ (p6). Those that travel the furthest distances would incur higher out-of-pocket costs, often a hidden cost of treatment. In Australia, patients with cancer living >100 km away from a treatment centre are entitled to discounted travel and accommodation, reducing the financial burden of travelling but staying a longer time than those living <100 km away. There may be a trade-off between the discomfort from travel and potential quality of life benefits, which could be particularly difficult for this group of end of life patients and as highlighted by Vargas et al, in identifying patient reluctance to access PRT.

The review highlighted the many different ways that PRT was described and extracted from the cancer registry data sets. This is also illustrated in the range of search terms that were included in the search strategies to identify palliative terms and shown in the MEDLINE search in figure 1. There is likely to be considerable differences in how much PRT is utilised in the last 9 months of life compared with the last 2 years of life, which is likely to have an impact on the results. However, it has identified the need for further work to standardise the follow-up periods and classifications of PRT.

The 2017 Lancet Commission on Palliative Care and Pain Relief recognises the integral role that PRT plays in improving the quality of life for patients and urges its integration as countries move towards achieving universal access to palliative care. The studies included in the review are representative of the Global North countries, which although unintentional, does highlight the paucity of literature and research being carried out in this area in other parts of the world, particularly in low-resource settings. The organisation of palliative care services globally is complex, affected by a multitude of factors; however, this review brings to light the need to recognise travel distance and travel time as barriers to accessing PRT. Further work in this area will not only prove beneficial when introducing strategies to mitigate the effects of travel distance but also provide guidance aiming to improve current palliative care practices.
LIMITATIONS
Although the study followed a comprehensive search strategy to maximise the identification of relevant studies from multiple databases, not all the studies were able to be included in the meta-analysis. The <50km and ≥50km categories were selected to maximise the number of studies that could be combined, but resulted in comparable data not being available for all studies. Studies differed in how access to PRT had been calculated (travel times or travel distance) and how it had been categorised in the statistical models. All included studies were retrospective in nature and reliant on information recorded in patient records. Studies differed in terms of what variables they accessed from the patient records and how they defined PRT and the time period for assessing whether patients had accessed PRT, highlighting again the heterogeneity of the studies. There may be a case for providing guidance to reduce the heterogeneity and data gaps in future studies of access to PRT. While the review findings are of undoubted value in broadening our understanding of the impact, distance has on utilisation of PRT, its applicability may be limited to countries with similar healthcare and travel systems.

CONCLUSIONS
This review and meta-analysis identified evidence of a distance decay effect with those patients living further away being less likely to receive PRT and where they received PRT as part of their care being more likely to receive SF radiotherapy. There is evidence of inequalities in accessing PRT, which has the potential to reduce the symptoms of advanced incurable cancer and should be available equitably. Further research is needed to understand whether these inequalities are influenced by clinical referral patterns, or by patients unwilling or unable to travel longer distances and to undertake research to expand the evidence base beyond the small number of healthcare settings included in this review.

Twitter Charlotte Kelly @charlotteekelly

Contributors CK conceived the study. CPC, SG and CK developed the protocol and search strategy and ran the searches. CPC and CK double screened the abstracts, double screened the full text papers and undertook the data extraction, quality assessment and meta-analysis. CPC and CK took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript. CK has overall responsibility for the final content as guarantor.

Funding CPC is a medical student at the Hull York Medical School. CK and SG are funded by Yorkshire Cancer Research as part of the TRANSFORM programme. UM is the Dean of Hull York Medical School. ML is a consultant clinical oncologist and RB is a Consultant Clinical Oncologist employed by the Hull University Teaching Hospital Trust.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval This study does not involve human participants.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. N/A.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs Chandini Parsan Chand http://orcid.org/0000-0001-7848-3354 Charlotte Kelly http://orcid.org/0000-0003-1302-6181

REFERENCES
14 Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available: www.covidence.org
Systematic review